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A rapid transmittance near-infrared (NIR) spectroscopy method was developed to predict the variation
in chemical composition of solid wood. The effect of sample preparation, sample quantity (single
versus stacked multiple wood wafers), and NIR acquisition time on the quantification of R-cellulose
and lignin content was investigated. Strong correlations were obtained between laboratory wet
chemistry values and the NIR-predicted values. In addition to the experimental protocol and method
development, improvements in calibration error associated with utilizing stacked multiple wood wafers
as opposed to single wood wafers are also discussed.
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INTRODUCTION

To ensure the global competitiveness of the pulp and paper
industry in the southeastern United States, more wood with
targeted characteristics has to be produced more efficiently on
less land. One viable solution to meet future industrial wood
demands is to greatly increase the productivity of current pine
plantations, leaving natural forests to be managed at low
intensity, primarily for saw timber, conservation, aesthetics, and
recreational ends. To achieve efficient utilization of the fast
growing plantation wood, tree breeders need to accurately and
rapidly screen the large breeding populations for a variety of
phenotypic traits.

Wood properties including density, tracheid diameter and
length, cell-wall thickness, and chemical composition have been
shown to be related to product quality. For example, paper
properties such as burst, tear strength, and tensile strength are
closely related to fiber morphology (1). While processing costs
and resultant profitability are more significantly affected by
chemical composition (2), specificallyR-cellulose and lignin
content. Traditional wet chemistry methods for the determination
of R-cellulose and lignin content are quite costly and time-
consuming (3).

Recently, we reported a rapid transmittance near-infrared
(NIR) spectroscopic method for the determination of lignin
content in solid wood (4). The lignin content of wood wafers

taken from 12 mm increment cores were statistically analyzed
using multiple regression and partial least-squares analysis.
Strong correlations were obtained between the predicted NIR
results and those obtained from traditional chemical methods.
This method satisfactorily predicted lignin content for samples
not included in the model development. Sykes et al. (5) utilized
this model to predict fiber length, coarseness, andR-cellulose
and lignin content of loblolly pine. However, lignin content
could not be adequately predicted using this model because of
the large error associated with the lignin measurements.

The single wood wafer NIR method (4) enables good
prediction of lignin content, but it requires collecting 15 single-
wafer NIR spectra from each ring of an increment wood core.
These spectra are then averaged to produce a single NIR
spectrum. When considering screening a tree-breeding project
where the amount of samples is enormous, the time required to
analyze a single sample is crucial. In this paper, a new method
is proposed wherein a single NIR spectrum is collected utilizing
several wafers from the same year ring stacked together. The
results obtained from the single stacked wafer NIR spectrum
model and the correlation between the wet chemistry and NIR
measurements forR-cellulose and lignin content are compared
to the averaged multiple single-wafer NIR spectra model.

MATERIALS AND METHODS

Materials. Wood increment core samples were collected from 13
9-year-old loblolly pines (Pinus taeda) received from the Tree Breeding
Program, Department of Forestry, North Carolina State University, NC,
and from 37 4-year-old aspen (Populus trichocarpa) received from Oak
Ridge National Laboratory, TN. The increment wood core extractives
were removed by acetone extraction as described previously (6). The
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extractive-free increment wood cores were then soaked in deionized
water overnight and microtomed into wood wafers (13 mm in diameter
and 200µm in thickness) (4). The wood wafers were dried under
vacuum over P2O5 overnight prior to NIR measurement. All NIR spectra
were recorded prior to chemical analysis.

Near-Infrared Spectroscopy. A Foss NIRSystems near-infrared
spectrometer equipped with an InTact Single Tablet Module (NR-1650)
and a monochromator (NR-6500-V/H) was used to analyze the wood
wafers. Absorbance spectra totaling 32 scans were collected at 2.0 nm
intervals over the range of 600-1900 nm.

NIR Sample Preparation and Measurement.The dried wood
wafers were analyzed using a modified sample holder as reported
previously (4). The NIR and wet chemistry measurements were
conducted on a ring-by-ring basis. All wood wafers collected from a
single growth ring were considered as one sample. For both the pine
and aspen, only a limited amount of woody material was available for
analysis. PineR-cellulose content was determined using wood wafers
collected from the springwood rings 2, 4, 6, and 8, whereas lignin
content was determined from springwood rings 3, 5, and 7. A total of
55 and 59 samples were analyzed forR-cellulose and lignin content,
respectively. For the aspen samples, the amount of available wood was
much lower and only lignin content was determined using the
springwood from ring 3. A total of 62 aspen samples were analyzed.
In a typical experiment, 10 wood wafers for the pine (corresponding
to about 80 mg of wood) or 14 wood wafers for the aspen (corre-
sponding to about 100 mg of wood) were stacked together, placed on
the NIR sample holder, and scanned. For the averaged single-wafer
model, the 10 (pine) or 14 (aspen) wood wafers obtained per ring were
individually scanned and averaged to represent a single sample
spectrum. As a result, the regression models developed for both the
averaged single-wafer spectrum and the stacked-wafer spectrum were
obtained from the same wood wafers and therefore correspond to the
same reference data obtained from the wet chemistry analyses.

Holocellulose Preparation. The isolation of holocellulose was
carried out according to the protocol of Yokoyama et al. (6) utilizing
a total of 10 wood wafers per analysis. Specifically,∼100 mg (oven-
dried) of wood wafers were suspended in 4 mL of deionized (DI) water
at 90°C and reacted with 200 mg of 80% sodium chlorite and 0.8 mL
of acetic acid for 1 h. The reaction mixture was then filtered using a
course crucible, washed, and dried at 105°C until no change in weight
was observed. For specimens where 10 wafers were less than 100 mg,
the amount of the applied chemicals was reduced proportionally.

R-Cellulose Preparation. R-Cellulose was prepared as per the
protocol of Yokoyama et al. (6), wherein 50 mg of the holocellulose
(outlined above) was reacted with 4 mL of 17.5% sodium hydroxide
for 30 min, and then diluted with 4 mL of DI water, and the reaction
mixture was left for 30 min. After a total reaction time of 1 h, the
fiber suspension was filtered with a coarse crucible, washed thoroughly
with DI water, and soaked in 1.0 M acetic acid for 5 min. The
neutralizedR-cellulose was then washed with deionized water. The
yield was calculated after drying at 105°C.

Lignin Content Determination. The lignin content was determined
using a modified Klason lignin method. The wood wafers (∼100 mg
oven-dried) were reacted with 1.5 mL of 72% H2SO4 at room
temperature with occasional stirring for 2 h. The solution was then
diluted with DI water to a 3% H2SO4 concentration and heated at 121
°C and 2 atm for 1 h in a commercial pressure cooker. The reaction
was filtered, and the acid-insoluble lignin was determined gravimetri-
cally. The filtrate was diluted to 100 mL with DI water, and the acid-
soluble lignin was calculated from the UV absorbance at 205 nm using
an extinction coefficient of 110 (AU L)/(g cm) (7). The acid-insoluble
and acid-soluble lignins were combined and reported as the total lignin
content. No statistically significant difference was observed in the total
lignin content obtained between the classical Klason lignin method and
our pressure-cooking method.

Calibration Development and Statistics.The calibration models
were developed using Foss NIRSystems Vision software (version 2.51).
First, outliers were identified using the Mahalanobis distance algorithm
to measure how far a sample was from the cluster center of the spectra.
A sample is considered to be an outlier when its probability level
exceeds a threshold value of 0.95 (8). Once the outliers were removed,

the remaining samples are split 75% for the calibration set and 25%
for the prediction set using an algorithm that measures a Euclidean
distance between samples. Redundant samples are moved into the
prediction set (8). A statistical summary of the calibration and prediction
sets is given inTable 1.

Prior to any calibration development, the original spectra were
converted to 2nd derivative spectra with a 10 nm segment and 0 nm
gap. Calibration equations were developed using a partial least squares
(PLS) regression with four cross validation segments and a maximum
of 16 factors. The best number of PLS factors for the model was
determined by the PRESS (prediction residual error sum of squares)
value, which is the sum of all squared differences between the lab and
predicted values (9). The PLS factors that yield the lowest PRESS
values were then chosen to establish a model (9, 10).

The coefficient of determination (R2), the standard error of calibration
(SEC), and the standard error of cross validation (SECV) were used to
evaluate the calibration performance. SEC is the standard deviation
for the residuals because of the difference between the actual lab values
and the fitted values of samples within the calibration set (11, 12).
SECV is an indication of how well an equation will predict samples
that were not used to generate the calibration equation in cross validation
(8, 13, 14).

The standard error of prediction (SEP) was used to evaluate how
well the calibration predicts the interested constituent value for a set
of unknown samples that are different from the calibration set (15).
The predictability of the calibration was evaluated by the ratio of
performance to deviation (RPD). The RPD was calculated from the
ratio of standard deviation of the reference data of prediction data set
to the SEP (16). The RPD should be as high as possible; values between
5 and 10 are adequate for quality control, values>2.5 are satisfactory
for screening breeding programs (11, 16), and values of∼1.5 can be
used as initial screening tools (15,17, 18).

RESULTS AND DISCUSSION

Stacked-Wafer Model versus Averaged Single-Wafer
Model. Our previous model (4) was established by averaging
15 single-wafer NIR spectra from a single growth ring of an
increment wood core. The large number of samples (wafers)
analyzed ensured that the NIR spectra obtained was representa-
tive of the entire year of growth and that enough material was
available for the subsequent wet chemistry measurements.
However, the analysis of 15 spectra per ring was quite laborious
and time-consuming. In an attempt to minimize data collection
time but analyze a representative amount of wood, 10 wafers
from the same year ring were stacked together and one NIR
spectrum was taken.Figure 1 shows the 2nd derivative NIR
spectra obtained from a single NIR spectrum of 10-stacked
wafers and the averaged spectrum of 10-single wafer spectra.
The intensity of the 2nd derivative NIR spectrum from the 10
stacked wafers was far more intense than that obtained from
the averaged spectrum of 10 single wood wafers. In addition to
the improved signal-to-noise and reduced calibration error (19),
the intense NIR absorption bands of the stacked wafer spectra
enhance regression development.

Table 1. Summary Statistics for R-Celluloses and Total Lignin
Contents for the Calibration and Prediction Sets

calibration set prediction setchemical
compositions (%)a n min max avg stdb n min max avg std

pine R-cellulose
stacked-wafer model 38 35.6 47.3 42.4 2.4 12 38.2 46.4 42.0 2.5
single-wafer model 38 35.6 47.3 42.4 2.4 12 38.2 43.8 41.0 2.0

pine total lignin 39 28.0 32.0 30.0 0.9 14 28.5 32.0 29.8 0.9
aspen total lignin 39 20.9 28.6 25.3 2.3 14 21.4 27.1 24.6 1.9

a On the basis of extractive-free, OD wood weight. b Standard deviation.
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The pine wood wafers of theR-cellulose data set were used
to develop two calibration models, the stacked-wafer model and
the averaged single-wafer model.Figure 2 illustrates the
calibration results ofR-cellulose content of loblolly pine for
the stacked-wafer model (Figure 2a) and the averaged single-
wafer model (Figure 2b). A stronger correlation was obtained
for the stacked-wafer model (R2 ) 0.82) than that of the
averaged single-wafer model (R2 ) 0.80). The SEC was 1.05
for the stacked-wafer model and 1.17 for the averaged single-
wafer model. Thus, a better fit was obtained for the regression
models of the stacked-wafer model than the averaged single-
wafer model. The SECV, which is a better measurement of the
calibration error (18), exhibited the same trend between both
models, i.e., smaller calibration error in the stacked-wafer model,

SECV) 1.21 versus 1.87 for the averaged single-wafer model.
The considerably larger SECV than SEC in the averaged single-
wafer model could possibly be due to over-fitting of the data
(18). The lower signal-to-noise ratio in the averaged single-
wafer spectra (Figure 1) could result in some of the noise being
modeled during calibration development, thereby reducing the
SEC. Therefore, using stacked wafers as opposed to averaging
single-wafer measurements is not only faster but results in a
better signal-to-noise ratio, which leads to a reduction in the
calibration error. The stacked-wafer model will be utilized in
all of the proceeding analyses.

Prediction of R-Cellulose Content of Loblolly Pine.The
R-cellulose content calibration models were tested using the
prediction sample sets (12 loblolly pine wood wafer samples).
The relationship between the wet chemistryR-cellulose content
measurements and the NIR predictedR-cellulose contents are
quite good using the stacked-wafer model (R2 ) 0.75). As shown
in Figure 3a, the SEP is 1.42, which is slightly higher than the
SECV (1.21). The RPD is 1.77 indicating that the stacked-wafer
model could be used as a screening tool for estimating the
R-cellulose content of increment core samples.Figure 3b
illustrates the correlation between the wet chemistryR-cellulose
values and the NIR-predicted values for the averaged single-
wafer model (R2 ) 0.65), which is not as good as the stacked-
wafer model. Furthermore, the SEP is closer to the SEC than
SECV, and the RPD (1.54) is lower than that of the stacked-
wafer model. Thus, the predictability of the single-wafer model
is weaker than the stacked-wafer model. However, they both
fulfill the initial screening criterion (RPD) ∼1.5).

PLS Calibrations Based on Lignin Content.The stacked-
wafer method was also applied to develop two lignin content

Figure 1. Second derivative NIR spectra of (s) 10-stacked wafers and
(‚‚‚) averaged 10-single wafer.

Figure 2. Correlation between the lab R-cellulose content and the NIR-
fitted R-cellulose content of the (a) stacked-wafer model and (b) averaged
single-wafer model.

Figure 3. Correlation between lab-measured R-cellulose content and the
NIR-predicted R-cellulose content using (a) stacked-wafer model and (b)
averaged single-wafer model.
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calibration models based on loblolly pine and aspen. The
calibration results are shown inFigure 4. The correlation of
the pine wet chemistry lignin values and the NIR-predicted
lignin values was quite good (R2 ) 0.73, Figure 4a), where
the SEC and SECV were 0.47 and 0.58, respectively. These
considerably low values as compared to theR-cellulose models
(Figure 2a) may be due to the lower laboratory error for the
reference methods, 0.55 for lignin and 1.05 forR-cellulose.
Interestingly, the correlation obtained for the aspen data set was
very strong (R2 ) 0.95,Figure 4b), where the SEC and SECV
was 0.56 and 0.66, respectively. The enhanced calibration
performance of the aspen data set as compared to the pine data
set (R2 ) 0.73) may be due to the range of lignin content present
(11,19). The aspen has a broad lignin content range (21-29%
lignin) in which the samples are uniformly distributed as
compared to the pine samples (28-32% lignin) (20). Therefore,
to improve the calibration performance of loblolly pine, more
samples with greater differences in lignin content over a wider
range of lignin content values are needed.

Prediction of Lignin Content. Both lignin content calibration
models were tested on the loblolly pine and aspen prediction
sets (14 samples in each). The results are shown inFigure 5.
The correlation (R2 ) 0.52, Figure 5a) for the pine lignin
prediction was considerably lower than that of the calibration
set (R2 ) 0.73). However, the RPD was 1.49; therefore, the
calibration model can still be used for initial screening (15,17,
18). The relationship between the wet chemistry lignin values
and the NIR-predicted lignin values of the aspen data set is
very strong (R2 ) 0.89,Figure 5b), and the RPD is 2.58. This
high RPD value indicates that this calibration model can be used
successfully for screening lignin variation in aspen (11, 16).

Improving the Sources of Error. The work presented in
this study demonstrates that it is feasible to develop a good
calibration model using stacked wood wafers. The calibration
error can be reduced by some technical improvements, such as
increasing the signal intensities, increasing the accuracy of the
reference method, or broadening the variability of the calibration
set. Albeit, the greatest source of error in any calibration is
generally from the error associated with the reference laboratory
data (11,19).

The wet chemistry methods involved in the determination of
R-cellulose or lignin content rely on first breaking down the
wood into fine wood meals. This provides a more uniform
material and increases the chemical accessibility during the
respective reactions. However, to facilitate rapid screening,
minimal processing of the wood is required. Further, to reduce
the introduction of unnecessary variation between the NIR and
wet chemistry measurements, our method involves performing
the wet chemistry analysis directly on the wafers used in the
NIR analyses. Otherwise, these variations would cause a
negative influence on the calibration model (18), Therefore,
complete dispersion and mixing of chemicals throughout the
sample is crucial, particularly for the Klason lignin measure-
ments (21), where care needs to be taken to thoroughly knead
and stir the sample mixtures.

In R-cellulose determination, the system is more susceptible
to error because of the two-step reaction procedure utilized. First,
holocellulose must be isolated from the wood wafers by acetic
acid and sodium chlorite. As with the lignin analysis, care must
be taken to ensure sufficient mixing and introduction of reagent
chemicals. The resulting holocellulose is then further reacted
with NaOH(aq) to produceR-cellulose. These processes involve

Figure 4. Correlation between the wet-chemistry-measured total lignin
content and the NIR-fitted lignin content for (a) loblolly pine and (b) aspen.

Figure 5. Correlation between lab-measured total lignin content and the
NIR-predicted lignin content for (a) loblolly pine and (b) aspen.
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very frequent weighing, kneading, and stirring. In each step,
care must be taken to minimize the possible sources of error.
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